网站位置: turnitin/查重 /当前页面

x射线探伤检测论文结尾

点赞:48296 浏览:95263 更新时间:2024-04-15 投稿人:原创本站原创

论文查重入口报告多久出?大部分情况下10-30分钟可完成检测,偶遇高峰期可能有延迟。

这文是和重复率相关的教程,是解答论文相似度查重相关疑问。

一、X射线的原理及在电子材料研究中的应用

布拉格条件。

2dsinθ=nλ。

式中,λ为X射线的波长,λ=1.54056Å。

衍射的级数n为任何正整数。

d和θ是对应的一组数据;当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到晶体或部分晶体样品的某一具有点阵平面间距d的原子面上时,就能满足布拉格方程或者布拉格条件,从而产生三维衍射,衍射强度用感光照片或者闪烁接收器等进行接收和从而获得一组X射线粉末衍射图或资料。

这是一个十分复杂的问题,但是布拉格和劳厄等简化了这个问题。在对衍射原理进行讨论或者对衍射谱图进行解析的过程中,引入了晶面间距d和衍射指数n的概念,于是使问题得到了简化。当把衍射指数指标化后,在布拉格方程中,一般可只取n=1,即都把衍射峰看作某晶面的一级衍射峰。如440衍射斑点或衍射峰可以解析为110晶面的4级衍射贡献和或者220晶面的2级衍射贡献和或者440晶面的1级衍射贡献;待到指标化后,它只被看作440晶面的一级衍射。如此类推。

X射线衍射分析法进行物相分析时,常用照相法和衍射仪法获得样品衍射花样。它们都要遵循衍射原理,衍射原理中最重要的就是布拉格公式或布拉格方程。

厄瓦尔德反射球,可以用图解的方式解释衍射原理。

倒易点阵最重要的应用就是用厄瓦尔德反射球图解并阐述了衍射原理。调整一级布拉格公式2dsinθ=λ为。

sinθ=λ(2d)=(1d)(2λ)。

这个式子表明,一级布拉格公式的所有元素都可以集中到一个直角三角形,θ角的正弦可以表示为晶面间距d的倒数(1d作θ角相对的直角边)与2倍波长λ倒数(2λ作斜边)的商。

图1厄瓦尔德反射球。

图1是著名的Ewald反射球。以样品位置C为中心,1λ为半径作圆球,入射X射线ACO(直径)的A和O两点均在球赤道圆上,设想晶体内与X射线AC成θ角的晶面(hkl)形成衍射线CG交赤道圆于G,则AG⊥OG。∠OAG=θ,OG=1d。是符合布拉格方程的(hkl)晶面的衍射斑点,必在这个球面上。此球称为厄瓦尔德反射球。CG是衍射线方向,∠OCG=2θ是衍射角。还可以看作是以O点为原点的衍射面(hkl)的法线方向上的一点,该法线长度等于衍射面系列的晶面间距dhkl的倒数,不同于真实晶体的虚幻的点O和G及衍射面等组成了以晶体为正点阵的倒易点阵诸元素。O点是倒易点阵原点,OG是倒易矢量Hhkl。

单晶体的倒易阵是在三维空间有规律排列的阵点,根据厄瓦尔德图解可以领悟到单晶体的衍射斑点组成。粉末多晶体由无数个任意取向的晶粒组成,所以其某一确定值晶面(hkl)的倒易点如(110)在三维空间是均匀分布的,所有晶粒这些倒易点的集合构成了一个以O为球心和半径为1dhkl(=Hhkl)的倒易球壳,显然这个倒易球壳来源 cleVerschooL.com于那个hkl晶面族的衍射。不同晶面间距d晶面的衍射对应不同半径的同心倒易球壳,它们与反射球相交,得到一个个圆。以该圆为底面和以反射球心为顶点的旋转圆锥称为衍射圆锥或衍射锥,它的顶角夹角等于4θ。因为,当样品单晶旋转时或样品是多晶体时,满足布拉格方程的倒易点阵点不仅是一个已标出的,而是以C为顶点和以CO为对称轴和以CG为母线的旋转圆锥面都是样品中一个(hkl)晶面系列的衍射方向,该旋转圆锥面的顶角为4θ,其与反射球交点轨迹就是所在的垂直于直径ACO的圆。

图2旋转晶体的倒易点阵。

这是(hkl)晶面等于某一组特定值时的情况。当(hkl)值换为另一组值,衍射面自然也变为另一组值,布拉格角θhkl随hkl值变换而不同于前一个θ角,衍射角2θhkl也随之改变,衍射斑点的位置也相应改变。晶面指数不是连续变化,衍射圆锥面也相应地断续发生。旋转晶体在其转轴001方向获得如图2的倒易点阵结构:以转轴为轴的以晶体处即反射球心为顶点的以2θ为半顶角的一系列不连续的圆锥面再与反射球的交线圆。这些圆平面垂直于纸面,故在纸面上投影画为直线。从中心向两侧分别标以l=0和±1.±2.等。用感光胶片在垂直于l轴或C轴方向(表示属于倒易点阵空间)接收,会得到一系列同心圆环(或称为德拜圆环)。放感光胶片到平行于l轴方向,接收到的由衍射锥留下的交线图案就是一系列类双曲线极限球。

图3是平板照相法(平面底片法)获得X射线衍射图原理的图解;感光胶片垂直于X射线摆放。图3中的样品就是无规取向聚甲醛POM。

这种照相法的优点是一次实验可获得较多的衍射记录。解析衍射图案可以获得样品的许多结构信息,如取向情况,结晶情况等。

园筒底片法(又叫回转照相法或旋晶法)。

研究晶体结构时,特别是研究对称性较低晶体结构时,几乎总是使和易于处理和解析的单晶法。

回转照相法。

单晶固定在测试头上射线束照射的中心位置,使某晶轴平行于旋转轴。感光胶片装在园筒形相盒内,相盒园筒的中心轴线与转轴重合。使用单色X射线,垂直地入射位于转轴上的单晶某轴。设该晶轴为C轴,单色光波长入是常数,则单晶衍射的反射球具有固定的半径1λ。当单晶在其平衡位置附近不断地来回转动(回转或回摆)或单向转动时,倒易点阵也随之摆动或转动。一切能使感光胶片感光的衍射线必然满足。

c(cosγ—cosγo)=lλ。

固晶轴与λ射线垂直,转动的衍射线集合组成了一套套同轴的L是层线数。圆锥面(特称劳厄锥),见图4。图4是回转照相和衍射劳厄锥和衍射底片层线晶胞参数求解图示图。λ射线所在的平面是一个大圆,在圆筒底片引发感光形成赤道线,指数为hko;在展开的相平面中是位于的水平真线,称为O级层线(l=0)。向上(或向下)依次是第1,2,等层线(指数分别为hk1,hk2等),它们与0层线都是互相平行的水平直线。

图5是多晶粉末德拜谢乐照相法示意图。胶片贴内壁安装。粉晶圆锥衍射面被德拜谢乐园筒形感光胶片所截,每个劳厄锥的截线都是一对关于X射线入射点为对称的弧线。

多晶粉末衍射仪法。

衍射仪的接收器把获得的光的闪烁信号转化为强度输出,如果用XY型记录仪画出谱图,就是多晶粉末衍射谱。横坐标是衍射角(2θ);纵坐标是衍射强度。

http:zhidao.baiduquestion129047241.html。

http:zhidao.baiduquestion130192653.html。

http:zhidao.baiduquestion122433124.html。

http:zhidao.baiduquestion126659189.html。

二、X射线到底是什么

X射线又称伦琴射线。它是一种波长很短的电磁辐射,其波长约为(200.06)×108厘米之间。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸和木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。放出的X射线分为两类:(1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射;(2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射。连续光谱的性质和靶材料无关,而特征光谱和靶材料有关,不同的材料有不同的特征光谱这就是为什么称之为特征的原因。X射线的特征是波长非常短,频率很高。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流。1906年,实验证明X射线是波长很短的一种电磁波,因此能产生干涉和衍射现象。X射线用来帮助人们进行医学诊断和治疗;用于工业上的非破坏性材料的检查;在基础科学和应用科学领域内,被广泛用于晶体结构分析,及通过X射线光谱和X射线吸收进行化学分析和原子结构的研究。

临床医生为了明确诊断,常需要病人到放射科做各种检查,如透视和摄片和消化道钡餐以及特殊的造影等。因而经常会遇见病人向放射科医生提出这样或者那样的问题,其中最多最普遍的问题是:这些检查对我的健康影响大吗要回答这个问题不是简单一句话就能说明白的,具体情况要具体对待

首先要从X线的基本原理谈起。X线是德国物理学家伦琴·威廉·康拉德于1895年11月8日发现的。当时由于人们对这种射线不了解,就给它取了个未知数X的名字,后来人们便称它为X射线。X线对人体健康确有一定危害,X线照射量越大,对人体的损害就越大。X线照射量可在身体内累积,其主要危害是对人体血液成分中的白细胞具有一定的杀伤力,使人体血液中的白细胞数量减少,进而导致机体免疫功能下降,使病菌容易侵入机体而发生疾病。根据X线理论原理,病人在X线检查时,安全照射量应在100伦琴以内,按这个照射量再制定出容许的照射次数和时间。如胸部透视在几天以内总的积累不应超过12分钟,胃肠检查不应超过10分钟。至于摄片检查因部位不同,照射量多不同,所以相应的容许照射次数也不同。病人在一年当中做23次检查对健康的影响是微不足道的。而且随着医学影像学的不断发展,目前胶片及暗盒夹都采用了感绿屏和感绿片,这样X线照射量要比原来剂量还要减少12量,从而更加保护了病人的健康,且诊断效果没有丝毫降低。此外,近年来各大医院均采用摄片为主和透视为辅的方式。一方面是为了减少病人过多摄入X线量(透视比摄片X线量大),另一方面也可为诊断疾病留有依据,以便于治疗和复查对比

虽说X线检查对绝大多数人是安全的,但仍应强调,由于胎儿和婴幼儿和儿童对X线非常敏感,故孕妇和婴幼儿和儿童应尽量避免X线检查。如果必须检查,特别是作骨盆测量或胎儿检查时,则次数不得超过23次。对婴幼儿的X线检查最好仅将被检查部位暴露,其余部分均应遮盖。在正常情况下,如果不超过容许照射时间及次数应该是相对安全的。但是对于X线的敏感性每个人是不相同的,它还与人体的一般健康状况有关系,更重要的是所谓安全照射量并不保证对遗传因子也是安全的,因为目前对于足以影响遗传的照射量究竟是多少还不十分明确。但是,从预防角度来看,X线检查次数还是越少越好。

三、无损检测X射线的主要健康安全危害和重要环境因素

x射线探伤检测论文结尾

x射线探伤对人体的危害1

如果短期受到工业X射线探伤幅射,不会对身体造成什么影响,但是如果长时间接触的话,会导致一系列的危害:会使身体免疫力下降,会导致白血病;会损害身体的活跃细胞,进而导致一些疾病,比如甲状腺疾病和乳腺增生;也会破坏基因,甚至导致癌症。所以尽可能的不要接触工业X射线。

工业x射线比一般的射线在数量上和强度上都要大很多,一定要做好保护措施,因为放射性物质会影响人身体各个器官的功能,比如生殖系统和造血系统,严重可致癌。建议工作期间一定要穿专门防辐射的铅衣或者佩戴剂量计,确定每年具体受到多少辐射量,并定期去医院做体检。注意时刻观察自己的身体状况,尽量避免长时间呆在辐射大的工作环境。

可能会导致细胞受损,并且还会出现组织器官损伤,如果在平时几分钟内接触,一般不会造成太大影响,特别是对于长期接触的人群,在接触时一定要穿好防晒服,能够减少X线损伤。如果是儿童或者是怀孕期间的女性最好不要进行X光的检测,避免导致胎儿出现畸形,平时可以在权衡利弊情况下检测。

射线探伤主要是指利用某种射线来检验焊缝及其热影响区内部缺陷的一种探伤方法,而常用的射线主要有x射线和γ射线,对于检测设备有着时间短和速度快和灵敏度高等特点。

但是无论那哪种射线,对人体都是具有辐射效应的,长期接触存在危害人体健康情况;尤其经常接触,可引起全身效应,致使一些急和慢性放射病,偶尔单一可引起皮肤损伤和眼晶体损伤等危害身体。对于经常工作,还需做好防护措施,避免频繁持续接触,而长期接触最明显的症状是引起脱发,严重时可诱发其它病变影响。

x射线探伤对人体的危害2

射线探伤常用的射线有X射线和γ射线两种。

X射线对机体的影响,由于受多种因素的影响所引起的临床反应亦多种多样。射线对人体的损伤显现在受照者本身时称躯体(本体)效应。如影响到受照者后代则称遗传效应。

按对受照者损伤的范围不同又可分全身效应(如急和慢性放射病).单一组织的效应(如皮肤损伤和眼晶体损伤等)和胎内照射的效应(如胎儿畸型等)。若从x线作用于机体后产生效应的时间考虑,尚可分近期和远期效应。

人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质和核酸和酶,它们都是构成活细胞组织的'主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

核辐射针对生物体的危害主要在于,核辐射可以电离有机生物分子,包括细胞内行使功能的蛋白质和DNA和RNA等大分子以及其他有机小分子。辐射使得这些分子结构被破坏,或者带上电荷,从而让有机分子不稳定和发生重排或者产生对机体有害的自由基。其中受核辐射影响最大的是DNA分子。

核辐射对生物体DNA的影响,常常发生在细胞复制比较活跃的细胞中,例如上皮细胞和生殖细胞和骨髓中的造血干细胞等。因为普通细胞的DNA一般不再复制,细胞受到照射后只影响这一代细胞,因而影响相对较小。

而复制细胞比较活跃的细胞,结构松散,容易受到损伤且不易修复,还可能种下坏种子,造成癌变。由于造血干细胞是血细胞和免疫细胞的源头,当造血干细胞发生癌变后,白细胞无限复制,造成白血病,同时造成免疫系统崩溃,机体的修复也将难以进行。

x射线探伤对人体的危害3

射线探伤对人体的危害有哪些

射线探伤危害性较小,主要危害集中在磁悬液,只要磁悬液不是有毒物质危害几乎也可以不计算,如果使用的是荧光磁粉,那就要使用黑光灯,就是紫外线灯,这种光线是对人体有危害的,铸造中的MT探伤一般不经常使用荧光磁粉;干式磁粉主要就是粉尘污染,对肺部有一定的影响。

射线探伤特点有哪些

1.x射线能穿透一般可见光所不能透过的物质。其穿透能力的强弱,与x射线的波长以及被穿透物质的密度和厚度有关。

2.x射线波长愈短,穿透力就愈大;密度愈低,厚度愈薄,则x射线愈易穿透。在实际工作中,通过球管的电压伏值(kV)的大小来确定x射线的穿透性(即x射线的质),而以单位时间内通过x射线的电流 (mA)与时间的乘积代表x射线的量。

3.x射线或其它射线(例如γ射线)通过物质被吸收时,可使组成物质的分子分解成为正负离子,称为电离作用,离子的多少和物质吸收的X射线量成正比。

4.通过空气或其它物质产生电离作用,利用仪表测量电离的程度就可以计算x射线的量。检测设备正是由此来实现对零件探伤检测的。X射线还有其他作用,如感光和荧光作用等。

在做射线探伤检查时候,一定要注意在医生的指导下进行检查,要注意检查时候按照医生指导来进行检查,不要盲目的造成自身的伤害。以上就是关于射线探伤对人体的危害介绍,大家在进行检查时候一定要先了解下相关的检查准备工作。

四、探伤检测的X光射线探伤

X射线探伤原理

x射线的特性 X射线是一种波长很短的电磁波,是一种光子,波长为106108cm  x射线有下列特点:   穿透性 x射线能穿透一般可见光所不能透过的物质。其穿透能力的强弱,与x射线的波长以及被穿透物质的密度和厚度有关。x射线波长愈短,穿透力就愈大;密度愈低,厚度愈薄,则x射线愈易穿透。在实际工作中,通过球管的电压伏值(kV)的大小来确定x射线的穿透性(即x射线的质),而以单位时间内通过x射线的电流 (mA)与时间的乘积代表x射线的量。  电离作用 x射线或其它射线(例如γ射线)通过物质被吸收时,可使组成物质的分子分解成为正负离子,称为电离作用,离子的多少和物质吸收的X射线量成正比。通过空气或其它物质产生电离作用,利用仪表测量电离的程度就可以计算x射线的量。检测设备正是由此来实现对零件探伤检测的。X射线还有其他作用,如感光和荧光作用等。   影像形成原理   X线影像形成的基本原理,是由于X线的特性和零件的致密度与厚度之差异所致。

本文结束语:此文是论文查抄袭查重有关的注意事项,为你的查重给予相关的解惑。