网站位置: turnitin/查重 /当前页面

脑机接口检测技术及其应用论文

点赞:49977 浏览:101663 更新时间:2024-04-17 投稿人:原创本站原创

论文抄袭率检测速度快并且检测准确率高,涵盖图书430多万种,期刊论文3万多种,累计超过6200万篇等其他大量资源。

此文是篇免费的和查抄袭方面有关的知识,可用于论文检测学习研究。

一、脑机接口的接口研究

侵入式脑机接口主要用于重建特殊感觉(例如视觉)以及瘫痪病人的运动功能。此类脑机接口通常直接植入到大脑的灰质,因而所获取的神经信号的质量比较高。但其缺点是容易引发免疫反应和愈伤组织(疤),进而导致信号质量的衰退甚至消失。

视觉脑机接口方面的一位先驱是William Dobelle。他的皮层视觉脑机接口主要用于后天失明的病人。1978年,Dobelle在一位男性盲人Jerry的视觉皮层植入了68个电极的阵列,并成功制造了光幻视(Phosphene)。该脑机接口系统包括一个采集视频的摄像机,信号处理装置和受驱动的皮层刺激电极。植入后,病人可以在有限的视野内看到灰度调制的低分辨率和低刷新率点阵图像。该视觉假体系统是便携式的,且病人可以在不受医师和技师帮助的条件下独立使用。

2023年,Jens Naumann成为了接受Dobelle的第二代皮层视觉假体植入的16位病人中的第一位。第二代皮层视觉假体的特点是能将光幻视更好地映射到视野,创建更稳定均一的视觉。其光幻视点阵覆盖的视野更大。接受植入后不久,Jens就可以自己在研究中心附近慢速驾车漫游。

针对运动神经假体的脑际接口方面,Emory大学的Philip Kennedy和Roy Bakay最先在人植入了可获取足够高质量的神经信号来模拟运动的侵入性脑际接口。他们的病人Johnny Ray患有脑干中风导致的锁闭综合症。Ray在1998年接受了植入,并且存活了足够长的时间来学会用该脑机接口来控制电脑光标。

2023年,Cyberkinetics公司获得美国FDA批准,在九位病人进行了第一期的运动皮层脑机接口临床试验。四肢瘫痪的Matt Nagle成为了第一位用侵入式脑机接口来控制机械臂的病人,他能够通过运动意图来完成机械臂控制和电脑光标控制等任务。其植入物位于前中回的运动皮层对应手臂和手部的区域。该植入称为BrainGate,是包含96个电极的阵列。

部分侵入式脑机接口一般植入到颅腔内,但是位于灰质外。其空间分辨率不如侵入式脑机接口,但是优于非侵入式。其另一优点是引发免疫反应和愈伤组织的几率较小。

皮质脑电图(ECoG:ElectroCorticoGraphy)的技术基础和脑电图的相似,但是其电极直接植入到大脑皮层上,硬脑膜下的区域。华盛顿大学(圣路易斯)的Eric Leuthardt和Daniel Moran是最早在人体试验皮层脑电图的研究者。根据一则报道,他们的基于皮层脑电图的脑际接口能够让一位少年男性病人玩电子游戏。同时该研究也发现,用基于皮层脑电图的脑机接口来实现多于一维的运动控制是比较困难的。

基于光反应成像的脑机接口尚处在理论阶段。其概念是在颅腔内植入可测量单神经元兴奋状态的微型传感器,以及受其驱动的微型激光源。可用该激光源的波长或时间模式的变化来编码神经元的状态,并将信号发送到颅腔外。该概念的优点是可在感染和免疫反应和愈伤反应的几率较小的条件下长时间监视单个神经元的兴奋状态。 作为有潜力的非侵入式脑机接口已得到深入研究,这主要是因为该技术良好的时间分辨率和易用性和便携性和相对低廉的。但该技术的一个问题是它对噪声的敏感,另一个使用EEG作为脑机接口的现实障碍是使用者在工作之前要进行大量的训练。这方面研究的一个典型例子是德国图宾根大学的Niels Birbaurmer于1990年代进行的项目。该项目利用瘫痪病人的脑电图信号使其能够控制电脑光标。经过训练,十位瘫痪病人能够成功地用脑电图控制光标。但是光标控制的效率较低,在屏幕上写100个字符需要1个小时,且训练过程常耗时几个月。在Birbaumer的后续研究中,多个脑电图成分可被同时测量,包括μ波和β波。病人可以自主选择对其最易用的成分进行对外部的控制。

与上述这种需要训练的EEG脑机接口不同,一种基于脑电P300信号的脑机接口不需要训练,因为P300信号是人看到熟识的物体是非自主地产生的。美国罗切斯特大学的Jessica Bayliss的2000年的一项研究显示,受试者可以通过P300信号来控制虚拟现实场景中的一些物体,例如开关灯或者操纵虚拟轿车等。

1999年,美国凯斯西留地大学由Hunter Peckham领导的研究组用64导脑电图恢复了四肢瘫痪病人Jim Jatich的一定的手部运动功能。该技术分析脑电信号中的β波,来分类病人所想的向上和向下两个概念,进而控制一个外部开关。除此以外,该技术还可以使病人控制电脑光标以及驱动其手部的神经控制器,来一定程度上回复运动功能。

应用人工神经网络,计算机可以分担病人的学习负担。Fraunhofer学会2023年用这一技术显著降低了脑机接口训练学习所需的时间。

Eduardo Miranda的一系列试验旨在提取和音乐相关的脑电信号,使得残疾病人可以通过思考音乐来和外部交流,这种概念称为脑声机(encephalophone)。 John Donoghue及其同事创立了Cybernetics公司,宗旨是推动实用的人类脑机接口技术的发展。该公司目以Cybernetics神经技术公司为名在美国股市上市。BrainGate是该公司生产的电极阵列,该产品基于美国犹他大学的Richard Normann研发的犹他电极阵列。

Philip Kennedy创立了Neural Signals公司。该公司生产的脑机接口设备使用玻璃锥内含的蛋白质包裹的微电极阵列,旨在促进电极和神经元之间的耦合。该公司除了生产侵入式脑际接口产品,还销售一种可回复言语功能的植入设备。

2023年为止,William Dobelle创建的公司已经在16位失明病人内植入了初级视皮层视觉假体。该公司仍在继续研发视觉植入物,但这类产品至今没有获得FDA的批准,因而不能在美国境内使用于人类。

二、脑机接口技术的背景简介

脑机接口检测技术及其应用论文

直接用大脑思维活动的信号与外界进行通信, 甚至实现对周围环境的控制, 是人类自古以来就追求的梦想。 自从1929年Hans Berger第一次记录了脑电图以来 , 人们一直推测它或许可 以用于通信和控制, 使大脑不需要通常的媒介—外周神经和肢体的帮助而直接对外界起作用。 然而, 由于受当时整体科技水平的限制, 加之对大脑思维机制了解尚少, 这方面的研究进展甚微。

脑机接口(BrainComputer Interface ,BCI) 技术形成于 20 世纪 70 年代 (1973 年 ,Vidal) ,是一种涉及神经科学和信号检测和信号处理和模式识别等多学科的交叉技术. 20 多年来 ,随着人们对神经系统功能认识的提高和计算机技术的发展 ,BCI技术的研究呈明显的上升趋势 ,特别是 1999 年和 2023 年两次BCI 国际会议的召开为BCI 技术的发展指明了方向. 目前 ,BCI技术已引起国际上众多学科科技工作者的普遍关注 cLeverschOol.com ,成为生物医学工程和计算机技术和通信等领域一个新的研究热点. BCI 是一种连接大脑和外部设备的实时通信系统. BCI 系统可以把大脑发出的信息直接转换成能够驱动外部设备的命令 ,并代的肢体或语言器官实现人与外界的交流以及对外部环境的控制. 换言之 ,BCI 系统可以代替正常神经和肌肉组织 ,实现人与计算机之间或人与外部环境之间的通信 。.

BCI 技术的核心是把用户输入的脑电信号转换成输出控制信号或命令的转换算法. BCI 研究工作中相当重要的部分就是调整人脑和 BCI 系统之间的相互适应关系 ,也就是寻找合适的信号处理与转换算法 ,使得神经电信号能够实时和快速和准确地通过 BCI 系统转换成可以被计算机识别的命令或操作信号。

三、人工智能芯片直连大脑脑机接口大突破

近日,我国首例脑机接口反应性闭环神经刺激系统植入手术顺利完成。该系统的植入,意味着我国具备自主知识产权的脑机接口高新技术产品已经走到了全方位临床使用前的最后一步。

据悉,闭环反应性神经刺激系统为脑机接口在临床领域的重要应用, 该技术通过将人工智能芯片植入颅骨,颅内电极植入脑内,昼夜无间断监测脑电节律,一旦预测到即将发生的癫痫就会启动外源性干扰节律,直接阻断致痫灶内的癫痫形成。 。

赛博朋克技术的又一次实现 。

对未来 科技 感兴趣的朋友应该对赛博朋克2077 游戏 不陌生,在 游戏 中,你可以体验到不同的黑 科技 带来的新鲜刺激感,例如机器人和AR和VR和仿生人和记忆移植技术和智能追踪武器等。而作为其中代表性的技术之一,仿生人技术与此次的脑机接口就有异曲同工之处。

仿生人 是将机械与人进行结合,人可以通过机械获得更好的能力,通过读取大脑的基本指令实现对机械的控制。

而脑机接口则要求我们不仅需要读取大脑中的信息,还需要可以写入,即除了能够感知信息之外,还要能做出反应。作为是一种用户界面,用户可通过计算机读取脑中的信息,经过计算处理,让信号转化为相关的反馈指令,计算机可以接受大脑传来的命令,或者也可以发送信号到大脑。

正如新闻所提到的,脑机接口不仅可以做到检测危险信号,同时还能对其进行干扰和阻止,从而防止危险行为发生。医疗领域有了脑机接口技术,更多的患者即将获得重生的希望。

脑机接口技术的发展历程 。

据悉, 脑机接口的形式,可按照在大脑中的采集位置分为非侵入和半侵入式和侵入式三种。 他们之间最大的区别是,是否对大脑采用有创口的手术方式来获取神经元信息。其中,非侵入式模式仅作用于头皮;而半侵入式则将设备植入头皮和大脑皮层之间;侵入式则完全植入大脑皮层。

脑机接口技术看似很科幻,其实早在20世纪,人们就已经开始对其进行研究了。

在20世纪70年代,人类第一次对面向运动功能的脑机接口进行研究,并证实了猴可以在闭环的操作性条件作用后快速学会并可以自由地控制初级运动皮层中单个神经元的放电频率。不过该阶段大多都是对动物进行研究,直到20世纪90年代,面向运动的脑机接口有了迅速的发展,人们可以通过技术实时捕捉神经信号,并控制外部设备。

得益于多年来对动物进行的实验基础,脑机接口技术逐渐应用到人体,早期的植入设备例如人工耳蜗等可以帮助用于恢复损伤的听觉和肢体运动能力和视觉等。

最令人印象深刻的是,在2023年巴西开幕式上,高位截瘫青年Juliano Pinto通过脑机接口技术逐渐恢复下肢运动功能,同时利用人工外骨骼技术驱动外骨骼机器人行走,从而实现开球。

在我国,浙江大学也曾在2023年完成了国内首例植入式脑机接口临床转化研究,患者可以利用大脑皮层信号精准控制外部机械臂与机械手,实现三维空间的运动。

近年来,随着脑机接口技术的不断发展,众多企业也开始在脑机接口领域布局。 。

说到脑机接口,马斯克投资成立的神经 科技 公司Neruallink公司可以算是该领域的代表企业了。Neuralink曾给实验猪的大脑表层植入过芯片,然后将猪的大脑运动无线传输到电脑上观察。他们还曾在猴子的手臂和手上植入了同一枚芯片,让猴子可以用意念控制光标移动,接住 游戏 里移动的乒乓球。

在对人体的侵入式脑机接口研究中,马斯克的Neuralink公司提供了更安全的方法,它让开颅的尺寸缩小到只有硬币大小,从而减少对大脑的创伤。

除了国外的 科技 公司,近年来,国内也出现了一批以脑机接口为主营业务的高 科技 企业,例如研究侵入式脑机接口方向的创立于2023年的博睿康 Neuracle公司,2023年创立的科斗脑机 科技 公司和2023年创立的宁矩 NeuraMatrix和优脑银河 Neural Galaxy,以及2023年创立的脑虎 科技 NeuroXess 等。利用脑机接口和人工智能等技术,为医疗和 娱乐 和生产等领域提供技术支持。

结尾 。

纵观脑机接口技术发展的几十年间,人类对脑机接口的研究从动物到人体,从微创到无创,从医疗领域到生活其他各领域,给人们的生活带来便利的同时,也存有一些担忧。毕竟脑机接口里植入的芯片,它不会有像人类一样的 情感 变化,在面对决定时只有算法决定下的执行,不会出现犹豫的情况。而人类是有 情感 的,一时的危险性意识行为可能只是想想而已,并未想要付诸行动。如果搭载了脑机接口可能就会直接执行该行为,给 社会 安全带来威胁。

参考资料: 。

四、脑机接口技术的结语

BCI 是一种多学科交叉的新兴技术 ,它涉及神经科学 和信号检测和信号处理 和模式识别等多种学科领域. BCI 技术的研究具有重要的理论意义和广阔的应用前景. 由于 BCI 技术的发展起步较晚 ,相应的理论和算法很不成熟 ,对其应用的研究很不完善 ,有待于更多的科技工作者致力于这一领域的研究工作. 随着技术的不断完善和成熟 ,BCI 将会逐步地应用于现实 ,并为仿生学开辟新的应用领域。

五、什么是脑机接口

脑机接口。

编辑。

脑机接口模式。

脑机接口是在人脑与计算机或其他电子设备之间建立直接的交流和控制的通道。近年来,随着神经科学和信息科学和材料科学等领域的快速发展,衍生出了一种新型的高科技技术——脑机接口(Brain Computer Interface, BCI)。通过BCI技术能够在生物大脑与外部机械设备之间建立起一条直接的信息交流通道,从而实现了脑与外部环境的直接交互。

中文名脑机接口缩写BCI 英文名Brain Computer Interfaces 。

目录编辑。

1脑机接口的定义。

2脑机接口的研究分类。

3脑机接口的发展。

4参考文献。

1脑机接口的定义编辑。

脑机接口技术(Brain Computer Interface,BCI)形成于 20 世纪 70 年代,是一门涉及神经学科和信号检测和信号处理和模式识别等多学科的交叉技术,它通过非自然的方法沟通大脑和外界环境,为它们提供了双向信息传输通道。外界信息能从仿生传感器输入到神经系统,神经信号也可以用于控制外部电子机械装置。该项技术可以修复和改善甚至扩展神经系统原有功能,提供一种崭新的信息交互模式,如上图所示。1999年6月第一届国际脑机接口会议首次给出BCI明确的定义:脑机接口是一个在大脑和外界(计算机或者其他设备及外部环境)之间传递信息的通讯系统,该系统的特点是不依赖于神经系统和肌肉组成的大脑正常输入输出通道来传递信息1。

2脑机接口的研究分类编辑。

根据脑机接口中的生物大脑与外部机械设备的信息传递方向的不同,可以将脑机接口的研究划分为两个方向:第一个方向是通过电极采集生物大脑中的神经信号,并对神经信号采取放大和约简和降维等操作,然后结合生物本身的运动行为数据对神经信号进行分析,解码生物的运动意图,继而将解码的结果转换成外部机械设备的控制指令,完成控制功能2,即脑机方向。另一个方向是反向的信息传递过程,即指通过生物体的外周神经系统,将外部设备的数据信号转换成电刺激和光刺激等不同方式的刺激手段直接作用于大脑皮层,诱发相关脑功能区细胞的神经元发放,从而使生物体产生特定的感受或者诱发其特定的行为,即机脑方向。

3脑机接口的发展编辑。

随着神经生物学和临床医学和材料科学和计算机科学等的发展,脑机接口技术为神经系统和周围环境的信息通讯提供了一个崭新的交互界面,并广泛应用于神经科学,医学康复和军事等领域3。

BCI 应用的最初定位是医疗康复,通过 BCI 系统为高度瘫痪或者行动不便的病人提供一个新的交流和控制手段。病人可以通过 BCI 系统在计算机上进行打字,或者控制轮椅行动,甚至控制假肢帮助移动和抓取。当一个机器人前进过程中遇到障碍时,需要设计程序控制机器人跨过或跳过。而对于植入电极的动物,遇到沟时本能地会跃过它。在掌握动物大脑原理的基础上,利用生物本身所具有的智能,结合人为的输入控制,相比较于机器人,从成本和技术上都更具有优势4。

上世纪 90 年代末以来,全球 BCI 研究团队数量增长迅猛,从 1995 年的不到 6 个,迅速发展到目前的数以百计。2023 年美国国防部国防预先研究计划局投入巨资,在全美 6 个实验室中开展意念控制机器的研究工作,进一步推动了全球 BCI 的研究热潮。诸多标志性研究成果在Nature和Science上先后发表,预示着 BCI 的研究进入了实质性阶段5。

近年来,随着医学技术和材料科学的进步,植入式电极在脑机接口技术中的研究取得了突破性的进展。当前BCI的研究热点包括。

1. BCI 系统的自适应性,更好的自适应性能够提高系统的准确率和稳定性。

2. 系统的实用性,像打字机这样的应用系统能够改进到投入实际应用。

3. 系统的通用性,不同的用户拥有不同的头皮脑电信号,可行的方案是对应不同的用户调整参数从而优化系统性能。

4. 系统的应用领域,有些研究人员通过 EEG 信号来研究大脑的工作原理,也有应用于特殊场合的,如研究司机驾驶时候的头皮脑电信号。

上文结束语:本文是相似度查重类的教程,可用于检测相关的研习。